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Mode interaction and the bypass
route to transition
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The manner by which external vortical disturbances penetrate the laminar boundary
layer and induce transition is explored. Linear theory suggests that the well-known
Klebanoff mode precursor to transition can be understood as a superposition of Squire
continuous modes. Shear sheltering influences the ability of free-stream disturbances
to generate a packet of Squire modes. A coupling coefficient between continuous
spectrum Orr–Sommerfeld and Squire modes is used to characterize the interaction.
Full numerical simulations with prescribed modes at the inlet substantiate this
approach. With two weakly coupled modes at the inlet, the boundary layer is little
perturbed; with two strongly coupled modes, Klebanoff modes are produced; with
one strongly coupled and one weakly coupled high-frequency mode, the complete
transition process is simulated.

1. Introduction
The process by which free-stream vortical disturbances induce transition to

turbulence in an underlying boundary layer, without the intervention of viscous
Tollmien–Schlichting instability waves, is called bypass transition. A good deal of
information about bypass transition is available from experiments and computer
simulations (Westin et al. 1994; Jacobs & Durbin 2000). Transition is preceded by
the formation of velocity perturbations that are very long in the streamwise direction.
They can be regarded as forward and backward jets in the perturbation field. These
are probably what originally were called ‘breathing modes’ (Klebanoff 1971), and what
Kendall (1991) named ‘Klebanoff modes’. They are not modes, in the sense of being
eigenfunctions of a response equation. They have been explained as displacements of
mean momentum. Their long streamwise extent can be understood by rapid distortion
theory: this theory shows that disturbances with small streamwise wavenumber kx

are subjected to prolonged growth by lift-up of momentum, without producing a
restoring pressure (Phillips 1969).

However, the process by which disturbances enter the boundary layer, prior to
their amplification by lift-up, has been a matter of uncertainty and speculation. One
proposal is that disturbances enter in the highly non-parallel leading-edge region.
Because the boundary layer is quite stable in that region, a process of vortex stretching
around the leading edge has been included in this idea (Goldstein & Wundrow 1998).
But, computer simulations reproduce bypass transition without mediation by a leading
edge.

1.1. Local receptivity

It is suggested in Jacobs & Durbin (2000) that external disturbances penetrate the
boundary layer locally, rather than entering at the leading edge. Inviscid theory does
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not allow such penetration: convected free-stream disturbances are sheltered by the
shear (Hunt & Durbin 1999). However, viscous theory shows that low Reynolds
number, low frequency, or sufficiently oblique free-stream disturbances can penetrate
the boundary layer. This behaviour is described by the continuous spectrum of the
Orr–Sommerfeld equation (Grosch & Salwen 1978; Gustavsson 1979).

The role of the continuous eigenfunctions is only uncovered by examining mode
shapes. Continuous Orr–Sommerfeld and Squire eigenfunctions are oscillatory in the
free stream. Inside the boundary layer their amplitude decays toward the wall.
The rate of fall off with distance from the top of the boundary layer depends on
the particular mode. Each mode has a particular depth to which it penetrates the
boundary layer. The extent of penetration is locally limited by the shear. The concept
of shear sheltering (Hunt & Durbin 1999) provides an understanding of this aspect
of mode shapes, and of the ability of free-stream disturbances to locally penetrate the
boundary layer.

The present idea of local interaction is consistent with an observation made by Leib,
Wundrow & Goldstein (1999). In that paper, disturbances inside the boundary layer
were described by the boundary-region equations. The boundary-region equations are
elliptic in the cross-flow plane. Conditions at the outer edge of the boundary layer
locally induce a disturbance in the shear layer.

1.2. Penetration depth and the coupling coefficient

Jacobs & Durbin (1998) define a ‘penetration depth’, d , modelled on the solution for
a piecewise linear shear layer. The solution in that case is an Airy function, which
oscillates periodically in the free stream and decays exponentially in the shear layer,
similar in form to the eigensolutions for the Blasius profile. Computed shapes were
characterized by the penetration depth, and the formula d ∝ (ωR)−0.133 provided an
approximate fit to the computed shapes. This formula is suggestive of the Reynolds
number and frequency dependence.

However, Jacobs & Durbin (1998) measured penetration depth rather subjectively.
They also restricted attention to a single wall-normal wavenumber, ky . Further mode
calculations show that larger ky disturbances oscillate deeper into the boundary layer
and the simplistic idea of penetration requires revision.

In this paper, we propose a more suitable characterization. Three-dimensional
continuous Orr–Sommerfeld modes force Squire’s equation resonantly (Hultgren &
Gustavsson 1981). The forcing can be characterized by a coupling coefficient, which
is defined as the inner product of an adjoint Squire eigenfunction with the forcing
term. This can be thought of as a measure of the propensity for continuous-spectrum
Orr–Sommerfeld eigenfunctions to generate breathing modes. Countering this is the
viscous decay. Thus, our coupling coefficient Θ is normalized by the modal decay
rate. Larger values of Θ define penetrating modes, in the present broadened sense.
Smaller values are non-penetrating.

The coupling coefficient is based on local boundary layer scales. It is interesting
to contrast the penetration characteristics of free-stream disturbances at different
downstream locations. Close to the leading edge, the boundary layer thickness is
small, all non-dimensional frequencies are low, and hence all modes are penetrating.
Farther downstream, based on the local boundary layer scaling, some modes become
high frequency and hence are sheltered by the shear. This is consistent with the local
interactions suggested in the numerical studies of Leib et al. (1999) and Jacobs &
Durbin (2000).
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Although the coupling coefficient represents penetration depth, it addresses other
aspects of the interaction too. The extent of penetration enters because the velocity
gradient appears in the integral that defines Θ . The coupling coefficient also recognizes
that Squire modes are only forced by oblique Tollmien–Schlichting waves. Two-
dimensional waves penetrate, but their coupling coefficient vanishes. Disturbances
with large ky enter the boundary layer, but they are strongly damped by viscous
decay, so have a small coupling coefficient.

The use of a single, resonant, Squire mode to define the interaction is somewhat
misleading. A single Orr–Sommerfeld wave forces all Squire modes, for the following
reason. Continuous-spectrum Squire eigenfunctions are oscillatory in the free stream.
Because they are the vertical component of vorticity, η, which is produced when an
Orr–Sommerfeld mode distorts the mean vorticity, a single mode cannot be produced
by Orr–Sommerfeld forcing: there is no source for the oscillatory free-stream vorticity.
This physical observation is illustrated by the initial value problem η =0 at t = 0;
its solution shows that all Squire modes are generated, and in the free stream they
sum to zero (see the Appendix and Schmid & Henningson 2001). This response is a
superposition of modes, not a single resonant mode.

At high forcing frequency, Squire modes are non-penetrating, and their perturbation
vanishes inside the boundary layer; for low-frequency forcing, Squire modes do not
vanish within the boundary layer. This is due to the variation of shear sheltering with
ky . Breathing modes, then, should be considered to be the incomplete cancellation
that occurs within the boundary layer. Penetrating resonant Squire modes may well
be the origin of transition; however, it is the incomplete cancellation of a packet of
Squire modes that causes the breathing modes to emerge.

Klebanoff modes are a prerequisite of bypass transition as observed experimentally
(Kendall 1991) and in numerical simulations (Jacobs & Durbin 2000). Their growth
has been extensively addressed in the literature – indeed, some of the analysis goes
back to the 1960s and 1970s (Phillips 1969). Recognizing that breathing, or Klebanoff,
modes are not eigensolutions, and can be regarded as a superposition, shifts our
focus from them to a study of more fundamental Orr–Sommerfeld and Squire mode
interactions.

1.3. Mode interaction and bypass transition

The present study of mode interactions provides a framework for addressing the
bypass problem in a manner similar to that of orderly transition. The proposed
relation between the continuous spectrum and bypass transition suggests an analogy
to the relation between Tollmien–Schlichting waves and orderly transition. In the
latter context, nonlinearity and interactions between eigenmodes have been studied
extensively – see the review by Kleiser & Zang (1991). These studies have elucidated
many aspects of orderly transition. That motivates us to initiate similar studies of the
nonlinear development of continuous modes. The picture is less clear than for orderly
transition, but the analogy does seem fruitful. The present paper describes computer
simulations of the nonlinear mode development.

Our direct numerical simulations (DNS) are of pairwise mode interaction. The
evidence presented herein supports the idea that penetration and nonlinear interaction
are key elements of the transition process. In the simulations, two Orr–Sommerfeld
modes are prescribed at the inlet. The inflow plane is chosen far enough upstream to
contain the interaction. It is upstream of the zone of the boundary region equations
denoted III in Leib et al. (1999, figure 1). Hence, the region to which those authors
attributed great significance is contained within our domain. However, the evolution of
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modes is here computed by DNS, so nonlinear interaction and non-parallel effects are
included fully. Our domain extends beyond the boundary region zone, into transition.

If both modes specified at the inlet are penetrating, perturbation jets appear,
but do not transition within the computational domain. If neither is penetrating,
they simply decay. Only the case of one penetrating and one non-penetrating leads
to transition in our computer experiments. This is consistent with the theory of
Jacobs & Durbin (2000): backward perturbation jets are generated by penetrating
modes and correspond to Klebanoff or ‘breathing’ modes. They are associated with
upward displacement of fluid elements. When the jets approach the top of the
boundary layer, they are subject to inflection point instability, triggered by higher
frequency non-penetrating disturbances. The instability of these elevated shear regions
results in the inception of turbulent spots. An analogy can be drawn with natural
transition where the high-frequency oscillations commence in shear regions located
at y/δ∗ ≈ 0.6 (Kleiser & Zang 1991, figures 4 and 5). Hence, both high- and low-
frequency disturbances are needed. We find herein that an inlet with just two modes,
of this ilk, suffices to produce bypass transition.

2. The Orr–Sommerfeld/Squire eigenvalue problem
The equations governing small disturbances about a parallel viscous mean flow

U (y) can be reduced into the following pair, for the normal velocity v and vorticity
η (Drazin & Reid 1995):

∂t

[
v

η

]
=

[
�−1

{
d2

yU∂x + (R−1� − U∂x)�
}

0

−dyU∂z R−1� − U∂x

] [
v

η

]
(2.1)

where � is the Laplacian operator, and �−1 is the formal inverse. Lengths are
non-dimensionalized by the boundary layer 99% thickness, δ, and velocities by the
free-stream speed, U∞, so that R = U∞δ/ν. (We will subsequently include U∞ in
equations, for clarity, although it is unity.)

To solve the system (2.1), Fourier representations can be invoked in the
homogeneous streamwise and spanwise directions, as well as in time:[

v(x, t)

η(x, t)

]
=

[
φ(y)

χ(y)

]
ei(kxx+kzz−ωt).

The governing equations are then reduced to the Orr–Sommerfeld/Squire eigenvalue
problem

−iω

[
φ(y)

χ(y)

]
=

[
L 0

−C S

] [
φ(y)

χ(y)

]
(2.2)

where

L = �−1 {ikxU
′′ + [�(�)/R] − ikxU�},

S = [(�/R) − ikxU ],

C = ikzU
′.

The solution to the Orr–Sommerfeld equation when y ranges from 0 to ∞ consists of
a discrete spectrum, with eigenvalues ωn, n= 1, 2, 3 . . . N , and a continuous spectrum
ωky

. The eigenfunctions satisfy limy→∞ φn, χn(y) = 0, limy→∞ φky
, χky

(y) bounded. The
latter are oscillatory in the free stream and provide a Fourier basis for disturbances
(Grosch & Salwen 1978).
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Figure 1. Example of continuous (a) Orr–Sommerfeld and (b) Squire modes.
R = 100, ω = π, ky = 3π, kz = π.

In optimal growth analysis (Schmid & Henningson 2001), the pair of equations (2.2)
is regarded as a coupled eigensystem, with non-normal eigenfunctions – due primarily
to the coupling term C. We adopt the alternative view that

−
[
iωosφ

iωsqχ

]
=

[
L 0
0 S

] [
φ

χ

]
. (2.3)

In this formulation, the relevant eigenvalue problems are the Orr–Sommerfeld and
homogeneous Squire’s – which are decoupled, and both eigenfunctions can be
independently normalized. Shape characteristics of the continuous spectra explain
the local interaction of free-stream disturbances with the boundary layer (figure 1).

Also, the coupling term, C, is not a non-normal contribution in the eigenvalue
problem (2.3). Instead, it is included as a forcing term in the normal vorticity equation(

�

R
− U∂x

)
η − ∂tη = Cφei(kxx+kzz−ωos t). (2.4)

The solution to the initial value problem η = 0 at t = 0 is given in the Appendix (see
also Hultgren & Gustavsson 1981). The vertical vorticity equation (2.4) is solved as
a forced response problem, with the vertical velocity being a known forcing function.
If the forcing is not orthogonal to the homogeneous Squire eigenfunctions, it will
generate secular growth; that is the analogue to non-normality.

3. Resonance in the eigenvalue problem
Consider the Orr–Sommerfeld operator[(

d2

dy2
− k2

x − k2
z

)2

− ikxR

{
(U − c)

(
d2

dy2
− k2

x − k2
z

)
− d2U

dy2

}]
φ = 0. (3.1)

The continuous spectrum was obtained in Grosch & Salwen (1978). In the free stream,
U (y) = U∞, and d2U/dy2 = 0. Therefore, the eigenvalue problem reduces to[(

d2

dy2
− k2

x − k2
z

)2

− ikxR

{
(U∞ − c)

(
d2

dy2
− k2

x − k2
z

)}]
φ = 0 (3.2)
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which admits solutions of the form φ ∼ eλy . Substituting and solving for λ yields four
roots:

λ2
1,2 = k2

x + k2
z + ikxR(U∞ − c),

λ2
3,4 = k2

x + k2
z .

The last two roots are a decaying and a growing exponential. The latter is rejected as
non-physical. The first two roots are oscillatory modes in the free stream φ ∼ e±ikyy ,
upon setting λ2

1,2 = −k2
y . This gives the dispersion relation for the Orr–Sommerfeld

continuous spectrum:

k2
x + k2

y + k2
z + ikxR(U∞ − c) = 0. (3.3)

Equation (3.3) can be solved for the temporal

ω = kxU∞ − i

R

(
k2

x + k2
z + k2

y

)
(3.4)

or spatial

kr
x = ω

[√
M2 +

4ω2

R2
+ M

]−1/2

, ki
x =

R

2

[
ω

kr
x

− 1

]
(3.5)

eigenvalues. Here

M =
1

2
+

2
(
k2

y + k2
z

)
R2

.

It is easy to see that the dispersion relation for the homogeneous Squire operator
is identical to the dispersion relation of the Orr–Sommerfeld equation. Substituting
U (y) = U∞ in the free stream, and χ ∼ e±ikyy , into the second of (2.3) gives the
dispersion relation

k2
x + k2

y + k2
z + ikxR(U∞ − c) = 0 (3.6)

for the homogeneous Squire operator, as was the case in (3.3). Therefore, the temporal
and spatial eigenvalues of the Squire operator are identical to their counterpart Orr–
Sommerfeld operator and a possibility of resonant forcing exists. Such resonance gives
rise to secular growth in the solution to the initial/boundary value problem. Hultgren
& Gustavsson (1981) have previously commented on the role of direct resonance in
the linear initial value problem; however, they were concerned with temporal growth,
rather than with coupling to free-stream disturbances. Here we are concerned with
coupling, and spatial growth is computed by full DNS.

4. Shear sheltering, mode shape, and penetration depth
In the limit of large Reynolds number, the phase velocity of the continuous modes

equals the free-stream velocity. In the free stream, these disturbances are convected
with the flow, and do not have an associated pressure disturbance. However, near
the edge of the boundary layer, a pressure perturbation exists, and it provides a
mechanism for the disturbance to penetrate the boundary layer. The penetration
depth is determined by a balance between pressure gradient and the effect of shear.
The latter inhibits the penetration of disturbances into the boundary layer – this
phenomena is called shear sheltering (Hunt & Durbin 1999).

The physical mechanism of shear sheltering is important in understanding the local
interaction of free-stream disturbances with the boundary layer. Only perturbations
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not susceptible to the shear filtering effect can induce a response within the boundary
layer. For example, contrast the Orr–Sommerfeld modes of figure 4. The highest
frequency mode is expelled from the boundary layer by the shear, while the lowest
frequency perturbation penetrates deep within the boundary layer. Only the latter
Orr–Sommerfeld forcing can be the origin of breathing modes.

Shear sheltering also defines the shape of the boundary layer response to a
penetrating perturbation. According to the solution of the initial value problem
described in the Appendix, a single Orr–Sommerfeld wave forces a complete ky

spectrum of Squire modes, and in the free stream they sum to zero. A non-penetrating
Orr–Sommerfeld forcing is not interesting because the corresponding Squire spectrum
is also sheltered. For penetrating Orr–Sommerfeld forcing, the Squire wave packet
still vanishes in the free stream, but not within the boundary layer. This is due to
the variation of penetration depth with ky . Some ky components do not penetrate the
shear, and hence only contribute to cancellation in the free stream. These components
will not cancel the boundary layer disturbance. It is the incomplete cancellation of a
packet of Squire modes that causes the breathing modes to emerge. One might cite an
analogy with the phase cancellation to which Butler & Farrell (1992) attribute some
aspects of transient growth. In that case, initial conditions can be chosen such that
disturbances amplify due to dispersive propagation. However, that phenomenology is
very different from the present shear sheltering mechanism.

Hence, the role of shear sheltering is twofold: it ‘selects’ the penetrating Orr–
Sommerfeld forcing, and defines the shape of the Squire response. An understanding
of shear sheltering is therefore important when studying the local interaction of
free-stream disturbances with the boundary layer. In the next subsection, the effect of
shear on mode shape is studied using the model problem of a piecewise-linear velocity
profile. The deductions of the simple model are then compared to numerical evaluation
of the Orr–Sommerfeld and Squire eigenfunctions for a Blasius base flow.

4.1. Solution for a linear velocity profile

The continuous spectra of the Orr–Sommerfeld and homogeneous Squire eigenvalue
problems exhibit similar penetration characteristics in the presence of shear. This
resemblance is expected intuitively, since it originates in the velocity profile, and the
uniform free-stream velocity. Analytically, a connection can be drawn by considering
the Orr–Sommerfeld equation for a piecewise-linear base flow:[(

d2

dy2
−
(
k2

x + k2
z

))2

− ikxR

{
(U − c)

(
d2

dy2
−
(
k2

x + k2
z

))}]
φ = 0. (4.1)

A simple change of variables to ψ = �φ =φ′′ − (k2
x + k2

z )φ transforms the three-
dimensional fourth-order Orr–Sommerfeld equation to

ψ ′′ −
[(

k2
x + k2

z

)
+ ikxR(U (y) − c)

]
ψ = 0 (4.2)

which is identical to Squire’s homogeneous problem.
Jacobs & Durbin (1998) solved the model problem of a two-dimensional Orr–

Sommerfeld disturbance about a piecewise-linear velocity profile (figure 2)

U (y) = U∞, y > 0,

U (y) = U∞ + τy, y < 0.

They invoked the simplifying assumptions ki
x ≈ 0 and c = ω/kx ≈ U∞. In this limit,

and in the more general case of a three-dimensional disturbance, the solution to the
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d
y = 0

y > 0

U = 1

y < 0

U = (τ y + 1)

Figure 2. Model problem for shear sheltering.

governing equation (4.2) is

ψ(y) = Ae−Q1/2y + Be+Q1/2y, y > 0,

ψ(y) = c1Ai

[
(iωRτ )1/3

(
y −

i
(
ω2 + k2

z

)
Rωτ

)]
, y < 0,

where Q = −(k2
x + k2

z ) − ikxR(U∞ − c). This solution resembles the continuous modes
for the Blasius profile (figure 1). In the free stream, y > 0, the solution is oscillatory.
Within the sheared region y < 0, the oscillations persist for |y| ∼ O((ω2 +k2

z )/Rωτ ). It
is clear that stronger shear τ and higher Reynolds number both reduce the penetration
of oscillatory solutions into the boundary layer. In the limit |y| 	 (ω2 + k2

z )/Rωτ , the
exponential decay is dominant,

ψ(y) ∼
exp
(
(i − 1) 1

3

√
2

√
ω R τ |y|3/2

)
|y|1/4

. (4.3)

The effect of ky on penetration depth does not appear in the above solution due to
the assumption c ≈ U∞, which neglects the decay rate.

The dependence on ky was not discussed by Jacobs & Durbin (1998). Increasing ky

results in an increase in the pressure gradient,

Dv

Dt
= −ikyp

thus allowing the disturbance to penetrate further into the boundary layer. In order
to include the effect of ky on the penetration depth, the above analysis is repeated,
accounting for the imaginary component of the phase speed ci , which is responsible
for decay. The solution inside the shear region can still be expressed in terms of the
Airy function:

ψ(y) = c1Ai

[
(iωRτ )1/3

(
y +

ik2
y

Rωτ

)]
, y < 0. (4.4)

When |y| <k2
y/Rωτ , the argument of the Airy function has negative real part, and

the solution is oscillatory. However, as |y| becomes larger (|y| >k2
y/Rωτ ), a decaying

solution is obtained. Therefore, including the decay rate (the complex part of the
phase speed) illustrates how the larger ky modes remain oscillatory well into the shear
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Figure 3. Effect of R on penetration depth (ω = π, kz = π, ky = π): , R =10;
, R = 100; , R = 1000. (a) Orr–Sommerfeld modes and (b) Squire modes.
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Figure 4. Effect of ω on penetration depth (R = 1000, kz = π, ky = π): , ω = π;
, ω = π/10; , ω = π/100.

region. The solution also captures the effect of ω, τ , and R on penetration depth. All
three parameters are inversely proportional to penetration according to (4.4).

4.2. Numerical solution

The above deductions based on a piecewise-linear profile are here verified by
comparison to the numerical solutions of the Orr–Sommerfeld and Squire eigenvalue
problems for a Blasius profile. The numerical results show dependence of shear
sheltering on Reynolds number R, frequency ω, and wall-normal wavenumber ky .
Consider the continuous modes shown in figures 3 and 4. The effect of increasing R,
and therefore the shear, is clearly to reduce the penetration of disturbances into the
boundary layer. Similarly, modes with higher frequency, ω, experience enhanced shear
filtering. These results are consistent with the analytical predictions from equation
(4.4). While the low-R eigenfunctions in figure 3 at first might seem uninteresting,
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Figure 5. Effect of ky on penetration depth (R = 100, ω = π, kz = π): , ky = π/2;
, ky = π; , ky = 4π.
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Figure 6. Effect of ky on wall-normal pressure gradient.

Squire’s transformation makes them relevant to oblique modes at higher Reynolds
number.

Also notable is the similarity of the penetration characteristics of the Tollmien–
Schlichting modes to the corresponding Squire eigenfunctions. A Squire spectrum,
forced by a non-penetrating Orr–Sommerfeld perturbation, is also non-penetrating.
These results suggest that low-frequency Orr–Sommerfeld modes are more effective
at perturbing the boundary layer, and generating normal vorticity.

The dependence on ky is curious. Consider the results of figures 5 and 6. The
disturbance pressure gradient is enhanced for larger ky . As a result, the perturbation
penetrates deeper into the boundary layer, consistent with the theoretical prediction
for a piecewise-linear profile. Hence, short-wavelength disturbances remain oscillatory
well into the boundary layer as shown in figure 5. However, the improvement of
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Figure 7. Penetration depth alone is not a sufficient measure of disturbance effectiveness,
shown by two modes at (R = 1000, kz = π): mode 1 ( , ω = π/50, ky = π/2) has much lower
decay rate than mode 2 ( , ω = π/10, ky = 5π/2).

penetration depth is at the expense of an increased decay rate; see equations (3.4),
(3.5). As a result, one expects the existence of an optimal ky for which the Orr–
Sommerfeld forcing penetrates deep into the boundary layer, while maintaining a
reasonable decay rate. Forcing at lower wall-normal wavenumber would be filtered
by the shear, and modes with higher ky would decay quickly and not persist far
downstream of the leading edge.

The dependence of shear sheltering on ky is more interesting when discussing the
response to a penetrating Orr–Sommerfeld forcing. The solution to the initial value
problem η = 0 at t =0 requires that the generated Squire spectrum sums to zero in
the free stream. However, the dependence of shear sheltering on ky results in a finite
disturbance inside the boundary layer – the breathing modes.

4.3. Penetration depth

Shear sheltering is a physical mechanism, perhaps the only one capable of explaining
the variation of mode shape inside the boundary layer. It is therefore important
in understanding the local interaction of free-stream disturbances with the boundary
layer. The filtering effect of shear also explains the different behaviours of the solution
to the initial value problem in the shear layer and the free stream. A superposition of
eigenfunctions that cancels in the free stream can have a large amplitude in the shear
region because different modes have different penetration characteristics, depending
on the wavenumber and frequency. In that sense, the physical mechanism of shear
sheltering defines the shape of Klebanoff or ‘breathing’ modes.

In order to quantify the sheltering effect of shear, or the effectiveness of disturbances
in penetrating the boundary layer, a concept of penetration depth was proposed in
Jacobs & Durbin (1998). For example, one might measure the distance into the
boundary layer where the disturbance has decayed to a specified level. Evaluating
penetration depth in this way is subjective, especially for modes which continue to
oscillate inside the boundary layer while also decaying.

Another limitation is the failure to characterize the persistence of modes. For
instance, consider the two modes of figure 7: both penetrate to a comparable depth
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into the boundary layer. But the mode with larger ky has a much larger viscous
decay rate ki

x . As a result, it is less effective at perturbing the boundary layer. This
example demonstrates that penetration depth, per se, is not an ideal measure of the
effectiveness of excitations at perturbing the boundary layer. For this purpose, the
concept of a coupling coefficient is introduced in the next section. This coefficient will
still include the idea of penetration, but it goes further in characterizing the degree
of local interaction between free-stream disturbances and the boundary layer.

5. Coupling coefficient
If χωsq

solves the eigenvalue problem (2.3), then the forced equation(
�

R
− U∂x

)
η − ∂tη = Cφei(kxx+kzz−ωos t) (5.1)

has a secular solution because ωos is also an eigenvalue to Squire’s equation – unless a
non-secularity condition is satisfied. The adjoint Squire operator is defined by (Schmid
& Henningson 2001)

〈S†χ†, χ〉 = 〈χ†, Sχ〉
where 〈f, g〉 ≡

∫ ∞
0

f ∗ g dy and the adjoint eigenfunction satisfies S†χ† = iω∗
sqχ

†. The
non-secularity condition is

〈χ †, Cφ〉 = 0.

This can be seen by solving an initial value problem, as in the Appendix. In general,
that inner product will not vanish; we use it to define the coupling coefficient.

The amplitude of the secular growth is determined by two competing factors. The
forcing 〈χ †

ky
, Cφ(y)〉 favours growth: it represents the coupling between the Orr–

Sommerfeld forcing and the Squire modes inside the boundary layer. The exponential
factor eωi

os t represents viscous decay. A combination of these can be used to quantify
the effectiveness of Orr–Sommerfeld forcing in exciting Squire response. One possible
combination, our proposed coupling coefficient, Θ , is

Θ ≡
∣∣∣∣∣−i〈χ̂ †, Cφ̂〉

ωi
os

∣∣∣∣∣ =
∣∣∣∣∣kz

〈χ̂†, U ′φ̂〉
ωi

os

∣∣∣∣∣ , (5.2)

where φ̂ and χ̂† are the Orr–Sommerfeld and adjoint Squire eigenfunctions,
normalized to unit maximum amplitude in the free stream:

max |φ̂(y)|y→∞ = max |χ̂†(y)|y→∞ = 1.

This choice of normalization is motivated by the notion of ‘coupling’. In order to
compare the coupling of different modes, their free-stream amplitude must match.

Using the definition of Θ , compare the two modes of figure 7: both have comparable
values of the inner product, 〈χ̂†, U ′φ̂〉 ∼ 0.02, and penetration depth. However, the
high-ky mode has a lower coupling coefficient, Θ = 0.78, versus 5.8 for the lower ky ,
due to their different decay rates.

5.1. Properties of the coupling coefficient, Θ

The coupling coefficient was evaluated over a range of ky and kz, for kx = 0.32. The
contours in figure 8 show an optimal value at ky = 4.4, kz = 5.1. The optimum in
wall-normal wavenumber occurs because ky has the dual effect of increasing the inner
product term, through enhanced penetration depth, and augmenting the decay rate
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Figure 8. The coupling coefficient for R =1000, kx = 0.32. Contour levels correspond to
0.4 � Θ � 2.8 at an increment of 0.3.
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Figure 9. Evaluation of the coupling coefficient for R = 1000, kx = 0.032. Contour levels
correspond to 6 � Θ � 34 at an increment of 4.

of the disturbance, in the denominator. These two competing physical phenomena set
the optimal ky .

The spanwise wavenumber is explicitly included in the numerator of the coupling
coefficient. It also contributes to the decay rate, ωi = −(k2

x + k2
z + k2

y)/R. Assuming the
inner product term has little dependence on kz, the maximum coupling coefficient is
then attained at k2

z � k2
x + k2

y .
A similar plot is shown for kx = 0.032 in figure 9. Qualitatively, this shows similar

behaviour to the previous case, kx =0.32. However, the contour levels are at larger
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Figure 10. The coupling coefficient evaluated at the optimal k∗
y(kx), k

∗
z (kx). The three curves

correspond to: �, R = 1000; �, R = 500; �, R = 100.

amplitude. This is due to enhanced penetration depth associated with lower kx ,
corresponding to the observation that lower frequencies penetrate deeper into the
boundary layer. Also note that the optimal ky, kz values are shifted. The lower ky

is expected since at lower kx the eigenfunctions penetrate deeper into the boundary
layer. Therefore, increasing ky causes a penalty from the increased decay rate, with
little gain from improved penetration. The optimal kz is also reduced, which implies
that the effect of the spanwise wavenumber is consistent with the prediction based
on k2

z � k2
x + k2

y .
The existence of wall-normal k∗

y and spanwise k∗
z optima is now established. Next, we

consider the dependence of the coupling coefficient on the streamwise wavenumber.
For every kx , the optimal k∗

y(kx) and k∗
z (kx) were obtained, and the coupling coefficient,

Θ(kx, k
∗
y(kx), k

∗
z (kx)), evaluated (see figure 10). The results illustrate the favourable

effect of reduced streamwise wavenumber, due in part to enhanced penetration
depth, and lower decay rate. When the streamwise wavenumber reaches a lower
threshold, kl

x , further reduction has little influence on the coupling coefficient. In the
region kx � kl

x , the penetration depth within the boundary layer is maximum. Also,
penetration becomes independent of ky . The optimal k∗

y is then fixed according to

k∗
y(kx � kl

x) = k∗
y(k

l
x).

When plotted as Θ/R versus kx R, as in figure 10(b), the coupling coefficient is
relatively independent of R. The scaling of kx is suggested by (4.4). The decay rate, in
the denominator of the definition of Θ (5.2), varies as ωi ∝ 1/R; this is the origin of
the scaling of Θ . The scaled plot shows residual R dependence at short wavelengths.
These are the disturbances that do not enter the boundary layer; they collapse in the
unscaled form, figure 10(a).

Lengths are normalized by boundary layer thickness and R =U∞δ/ν. It follows that
kx and R will become small near the origin of the boundary layer. Since kx plays the
role of a frequency – following Taylor’s hypothesis – all modes become low frequency
as δ → 0, and are penetrating; but because R → 0 they also decay rapidly. Hence,
disturbances near the leading edge decay (Jacobs & Durbin 2000), and the coupling
that leads to boundary layer jets and transition is local, in the downstream region
(Leib et al. 1999).
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Figure 11. Instantaneous contours of streamwise velocity fluctuation (−0.1 � u � 0.1). The
streamwise extent shown is 0.4 × 105 � Rx � 2.4 × 105. The wall-normal coordinate 0 � y � 10
is enlarged by a factor of 3. Line shows δ. Inlet mode: ω = 0.64, ky = π/3, kz = π,Θ = 0.19.

5.2. Boundary layer streaks

The coupling coefficient, as defined in (5.2), favours low-frequency modes. These
disturbances have low decay rates and are able to penetrate shear regions. Low-
frequency perturbations are also associated with the formation of streaks in boundary
layer flows. Therefore, the coupling coefficient can be used to quantify the ability of an
Orr–Sommerfeld disturbance to generate breathing modes within the boundary layer.

For example, consider the two modes with wavenumber vectors ω =0.64, ky = π/3,

kz = π and ω = 0.032, ky = π, kz = 4.7. The former has a lower coupling coefficient,
Θ = 0.19, due to its higher spatial decay rate and lower penetration depth. As a
result, it is not expected to generate any boundary layer streaks. The latter mode has
a much larger coefficient, Θ = 32.5, and hence is expected to generate perturbation
jets inside the boundary layer.

The deductions based on the coupling coefficients are verified using direct numerical
simulation of the full Navier–Stokes equations. The Orr–Sommerfeld mode is
prescribed at the inlet located at R = 103, and its development followed downstream.
The instantaneous fields due to the evolution of these modes are shown in figures 11
and 12. The numerical results confirm the above predictions based on the coupling
coefficient.

Figure 11 is a vertical section, illustrating that the high-frequency low-coupling
mode does not penetrate the boundary layer, but simply decays. Since the coupling
coefficient characterizes the local interaction of free-stream perturbations with the
boundary layer, it is therefore instructive to consider the downstream evolution of
Θ . The inlet condition R =103, ω = 0.64 can be located on figure 10(a) – Taylor’s
hypothesis is used to replace ω by kx . The inlet mode is clearly in the sheltered regime
(kx > kl

x), where Θ curves collapse and are independent of any downstream increase in
Reynolds number. Meanwhile, based on the local scaling of the boundary layer, the
local wavenumber kx increases downstream, and the coupling coefficient drops. The
combined effect of a decreasing Θ , and of the decay in free-stream intensity, is an
insignificantly perturbed boundary layer. This is clear in the numerical simulation
(figure 11).

Now, consider the results for the low-frequency large-coupling mode. Figure 12
is a planform, showing elongated disturbances in the boundary layer. The streaks
initially intensify downstream due to lift-up, followed by viscous decay. This should
be contrasted to the behaviour of the free-stream disturbance which simply decays.
These results are consistent with the prediction based on the coupling coefficient
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Figure 12. Instantaneous contours of streamwise velocity fluctuation (−0.3 � u � 0.3) evalu-
ated at y/δ0 = 0.58. The streamwise extent shown is 0.4 × 105 � Rx � 2.4 × 105. The
spanwise coordinate 0 � z � 8 is enlarged by a factor of 3. Inlet mode: ω = 0.032, ky = π,
kz = 4.7,Θ = 32.5.

of the inflow mode. The inflow disturbance, with kxR = 32, can be located near the
threshold for fully penetrating disturbances in figure 10(b).

It is interesting to consider an inflow disturbance with kxR < 10, and track the spatial
development of the coupling coefficient, which is best described using figure 10(b).
Initially, kxR is below the threshold for fully penetrating disturbances. Therefore, the
penetrating Orr–Sommerfeld mode induces a boundary layer response, and streaks
start to develop. Downstream, two regimes can be identified. Initially, based on local
scaling, the product kxR increases, but Θ/R is unaffected, and therefore the coupling
coefficient is larger. In the second regime, further downstream, the product kxR

becomes much larger than the threshold value, shear sheltering is effective, and the
coupling coefficient starts to drop. As a result of a decreasing Θ and lower intensity, the
free-stream disturbance can no longer induce a response inside the boundary layer.
This is clear in figure 12 where, downstream of the viscously decaying Klebanoff
modes, the boundary layer is unperturbed.

A word of caution is in order when considering the coupling coefficient for low-
frequency modes. Evaluating Θ for Orr–Sommerfeld modes ignores non-parallel
effects which become important in the long-wavelength limit (Leib et al. 1999).
However, in the numerical simulations, the Orr–Sommerfeld modes were only applied
as an inlet condition. The development of the streaks, which is sensitive to non-parallel
effects, was computed with the full Navier–Stokes equations.

6. Bypass transition
Numerical simulations with the full Navier–Stokes equations are used to investigate

the coupling further. To this end, modes are specified at the inflow, and their evolution
is followed downstream. In this section, the connection of the linear analysis to bypass
transition is investigated. In each case, disturbances will be characterized by their
coupling coefficient.

The incompressible Navier–Stokes equations are solved using a fractional step
algorithm on a staggered grid with a local volume flux formulation (Rosenfeld, Kwak
& Vinokur 1991). The convective terms are treated explicitly using Adams–Bashforth
time advancement. The pressure and diffusion terms are advanced by implicit Euler
and Crank–Nicolson differencing, respectively.

The computational domain, normalized by the inlet δ, is 360 × 20 × 16 in the
streamwise, wall-normal, and spanwise directions. The streamwise extent corresponds
to 0.4 × 105 < Rx < 4 × 105, where Rx = U∞x/ν. The simulations are performed on a
Cartesian grid, uniform in both x- and z-coordinates, and clustered near the wall
in the y-direction. The grid resolution is equivalent to the DNS mesh of Jacobs &
Durbin (2000).
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Figure 13. Velocity profile in the wall-normal direction at downstream location Rx = 6.9×104.
Inlet fluctuation is a single Orr–Sommerfeld mode with large coupling coefficient:
ω = 0.032, ky = π, kz =4.7,Θ =32.5. , Total streamwise velocity; , mean streamwise
velocity; , streamwise velocity perturbation.

The inflow is a superposition of the Blasius solution and a fluctuating component
due to Orr–Sommerfeld mode(s)

uinflow = UBlasius + ε
∑
modes

Re


 1

k2
x + k2

z


 ikxdφ/dy(

k2
x + k2

z

)
φ

ikzdφ/dy


 ei(±kzz−ωt)


 .

In each simulation, the amplitude of the wall-normal velocity fluctuation, ε, is chosen
such that vrms = 3% at the inflow plane. This choice is motivated by the direct
dependence of lift-up, and hence of boundary layer streaks, on the wall-normal
perturbation. Keeping the inflow vrms constant among simulations allows direct
comparison.

The coupling coefficient measures the ability of perturbations to penetrate the
boundary layer and produce streaks. This connection was demonstrated in the
previous section. DNS of a single inlet Orr–Sommerfeld mode were contrasted for
small and large coupling; see figures 11 and 12. Here, the results for large coupling
are considered further.

Figures 13 and 14 show the instantaneous u-velocity profile at downstream locations
Rx = 6.9 × 104 and Rx =9.1 × 104 respectively. In figure 13, the total velocity profile is
inflectional. However, it is still inviscidly stable according to Fjortoft’s criterion
because the inflection point is a vorticity minimum. Since the boundary layer
is continuously forced by the free-stream fluctuation, the forward and backward
perturbation jets intensify further downstream, and the inflectional velocity profile
becomes unstable (figure 14). Strictly, the inflection point theorem and Fjortoft’s
criterion apply to steady two-dimensional flow. They are invoked here non-rigorously,
on the grounds that large-scale low-frequency disturbances are under consideration.
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Figure 14. As figure 13 but at downstream location Rx = 9.1 × 104.

Figure 15. Instantaneous contours of streamwise velocity fluctuation (−0.3 � u � 0.3). The
plane is at y/δ = 0.8. The spanwise coordinate is enlarged by a factor of 3. Inlet modes:
ω =0.032, ky = π, kz = 4.7,Θ = 32.5 and ω = 0.064, ky = 4π/3, kz = 3.5,Θ = 10.1.

The bypass transition scenario proposed in Wu et al. (1999) and Jacobs &
Durbin (2000) involves a Kelvin–Helmholtz type of instability, whereby high-frequency
disturbances in the free stream trigger transition of the inflectional profiles near the
top of the boundary layer. In order to study this, two Orr–Sommerfeld modes are
prescribed at the inlet to the domain. A number of cases were tested, and transition
was observed in many of these calculations. Evidence in support of the proposed
transition scenario is obtained by examining the earlier stages of spot inception in
the transitional cases.

6.1. Pairwise mode interactions

Numerical experiments were first performed for inlet pairs of Orr–Sommerfeld
modes that have comparable coupling coefficients. When both modes have significant
coupling, streaks are formed inside the boundary layer. An instantaneous field due
to a pair of such modes is shown in figure 15. The perturbation jets initially intensify
downstream due to lift-up. This is followed by viscous decay, and transition is not
observed within the computational domain.

When both inlet modes have weak coupling coefficients, strong perturbation jets are
absent from the boundary layer. Consider for example the two modes of figure 16. The
higher frequency has small penetration depth, and hence does not affect the boundary
layer. The other mode has improved, yet still limited, penetration, and a higher decay
rate. As a result, it has a small coupling coefficient, and should decay downstream
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Figure 16. Two inlet modes with low coupling coefficients: ,
ω = 0.64, ky = π/3, kz = π,Θ = 0.19; , ω = 0.32, ky = π, kz = 1.96,Θ = 1.63.

Figure 17. Instantaneous contours of streamwise velocity fluctuation (−0.1 � u � 0.1). The
streamwise extent shown is 0.4×105 � Rx � 2.4×105. The wall-normal coordinate 0 � y � 10
is enlarged by a factor of 3. Line shows δ. Inlet modes: ω = 0.64, ky = π/3, kz = π,Θ =0.19 and
ω = 0.32, ky = π, kz = 1.96,Θ =1.63.

without the generation of streaks. These predictions are verified using DNS; a plot
of the instantaneous streamwise velocity perturbation is shown in figure 17. The
disturbance within the boundary layer, due to the slightly penetrating mode, does not
exhibit any significant growth – consistent with the small coupling coefficient. Instead,
it decays and is qualitatively similar to the free-stream perturbation.

Further simulations were performed to test the case where both inlet Orr–Sommer-
feld modes have low or large coupling coefficient. In all cases where both modes
had low coupling coefficients, no streaks were observed because shear sheltering
prohibited the Orr–Sommerfeld disturbances from penetrating the boundary layer.
When the inlet modes both had large coupling, streaks were formed, and the skin
friction was slightly above the laminar level. Still, none of these cases transitioned, or
developed turbulent spots. It takes only two modes at the inlet to provoke transition;
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Figure 18. Instantaneous ( ) and time-averaged ( ) skin friction profiles. Inlet modes:
ω = 0.032, ky = 1.87, kz = 2π/3.2,Θ = 17.4 and ω = 0.64, ky = π/3, kz = π,Θ =0.19.

Figure 19. Instantaneous v contours corresponding to figure 18. The plane is y/δ0 = 0.5.
The spanwise coordinate is enlarged by a factor of 3.

but they must be one at low frequency, with strong coupling, and one at high
frequency.

When one of the modes was strongly coupled, and the other weakly coupled,
transition was observed. Figures 18 and 20 show the instantaneous and time-averaged
skin friction for two of these transitional cases. In both, the skin friction starts at
the Blasius level. Inside the domain, the forward and backward perturbation jets are
formed due to the Orr–Sommerfeld mode that has large coupling. Lift-up causes the
backward jets to rise inside the boundary layer, while the forward jets stay closer to the
wall. This causes an increase in the skin friction coefficient as illustrated in the figures.
For the case with larger coupling, the increase in skin friction is more pronounced
due to stronger jets. Also, this case transitions earlier because an inflectional profile
is achieved early upstream.

The instantaneous skin friction profiles show a patch of turbulence upstream of
the fully turbulent region. The instantaneous velocity field corresponding to this skin
friction profile is shown in figures 19 and 21, where the streaks, turbulent spots, and
transition are evident.

In experiments on bypass transition (Westin et al. 1994), and also DNS (Jacobs &
Durbin 2000), the increase in skin friction due to forward perturbation jets is not as
intense as observed in figure 20. This suggests that an optimal disturbance, or one
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Figure 20. Instantaneous ( ) and time-averaged ( ) skin friction profiles. Inlet modes:
ω = 0.032, ky = π, kz = 4.7,Θ = 32.5 and ω = 0.32, ky = π, kz = 2.7,Θ = 2.0.

Figure 21. Instantaneous v contours corresponding to figure 20. The plane is y/δ0 = 0.5.
The spanwise coordinate is enlarged by a factor of 3.

with highest coupling coefficient, is not needed. It is sufficient to have a disturbance
that generates lifting backward jets, and as a result, an inflectional velocity profile
towards the edge of the boundary layer. This profile is then acted on by the higher
frequency non-penetrating perturbation.

6.2. Spot inception and Kelvin–Helmholtz type of instability

In order to better understand the process of turbulent spot inception, we examine
the earlier stages that lead to the formation of the turbulent patches. Figure 22
is a time sequence showing the high-frequency instability of the elevated backward
perturbation jets. The time sequence is extracted from the simulation presented in
figures 18 and 19. The background contours show the vertical velocity disturbance;
light contours correspond to positive v and dark regions to negative values.

Frame (a) shows the forward jet close to the wall; it is due to downward
displacement of high-speed fluid (dark v-contours). The backward perturbation jet,
due to upward displacement of low-speed fluid from near the wall, is elevated
towards the edge of the boundary layer. The frequency of those ‘breathing modes’
corresponds to the low-frequency inflow disturbance, ω =0.032. Higher harmonics
of the inflow disturbance and also interaction modes can be generated by the non-
linearity. However, the dominant frequency for the boundary layer disturbance agrees
with the inflow large-coupling mode. This should be contrasted to Jacobs & Durbin
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Figure 22. Perturbation velocity vectors in the (x, y)-plane. Time sequence showing the
Kelvin–Helmholtz type instability of elevated backward perturbation jets and the inception of
a turbulent spot. The sequence is extracted from the simulation presented in figures 18 and 19.
The vertical scale has been expanded by a factor of 2; vectors are separated by 4 grid points.
The background contours show the v-component (−0.05 � v � 0.05). The viewing window is
translated at 2

3
U∞ in order to follow the development of the turbulent spot.
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Figure 23. Instantaneous contours of streamwise velocity fluctuation (−0.3 � u � 0.3)
corresponding to figure 22(b). Dashed contours indicate negative values. Line shows δ.

(2000) where the streaks have a much lower frequency than any of the inflow
disturbances – in that case, they are generated by the interactions of a whole spectrum
of modes.

Small regions of undulation in the vertical velocity contours can be observed near
the edge of the boundary layer, on top of the backward jet. These perturbations are
pronounced in figure 22(b). The corresponding u-contours are shown in figure 23,
and provide a better representation of the instability. The streamwise wavelength of
these undulations is approximately 6.7 times inflow δ, and they convect downstream
at 2

3
U∞. Therefore, their temporal frequency is in agreement with the high-frequency

inflow mode ω = 0.64. Their short wavelength implies a low coupling coefficient and
poor penetration depth due to shear sheltering. Figure 23 confirms these predictions;
the high-frequency disturbance only affects the elevated backward perturbation jet.
The near-wall, forward jet is unaltered by the high-frequency free-stream disturbance.
Figure 23 also displays a marked similarity between the secondary instability of the
backward perturbation jets and the early stages of Kelvin–Helmholtz instability.

Figures 22(c)–22(e) capture the evolution of the secondary instability into a
turbulent spot. The flow region displayed moves downstream at 2

3
U∞ in order to

follow the growing instability. The streamwise and wall-normal extents of the high-
frequency disturbance clearly grow in time. The spanwise extent, not shown in this
figure, also increases. As the instability travels downstream, it intensifies and finally
erupts into a turbulent spot. The convected turbulent patch spreads, and merges with
the downstream fully turbulent flow as illustrated in figure 19.

7. Conclusion
The local interaction between free-stream disturbances and the boundary layer

shear is important in the study of bypass transition. Experiments and numerical
simulations both suggest low-frequency disturbances are more effective at penetrating
the boundary layer, and generating ‘breathing’ or Klebanoff modes. High-frequency
disturbances are limited to the free stream leaving the boundary layer unperturbed.
This behaviour is captured by the shape of the continuous Orr–Sommerfeld and
Squire modes. These eigensolutions are oscillatory in the free stream, and decay
inside the boundary layer. Eigenmodes of the piecewise-linear profile demonstrate an
analytic dependence of penetration depth on the wavenumber vector, local Reynolds
number R, and local shear.

The effect of the wall-normal wavenumber ky on penetration depth is particularly
interesting. The solution to an initial value problem shows that an Orr–Sommer-
feld disturbance forces Squire’s equation resonantly. The response is a packet of
Squire modes with varying ky , and, hence, varying penetration into the boundary
layer. Incomplete cancellation of this superposition of the Squire eigenfunctions
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gives rise to Klebanoff modes. A coupling coefficient was defined to characterize the
local interaction of continuous Orr–Sommerfeld modes and the boundary layer. The
coefficient captures the variation in penetration depth, and also the propensity of
Orr–Sommerfeld forcing to generate boundary layer streaks.

In order to investigate the coupling further, numerical simulations of the full
Navier–Stokes equations were performed for a pair of inflow modes. The complete
transition process is realizable through the interaction of one strongly coupled and one
weakly coupled mode. The low-frequency large-coupling inflow disturbance generates
breathing modes inside the boundary layer. The backward perturbation jets lift away
from the wall, towards the edge of the boundary layer. The inflectional velocity
profile then becomes susceptible to short-wavelength instabilities of the Kelvin–
Helmholtz type, triggered by the high-frequency free-stream disturbance. These
instabilities intensify downstream, and burst into turbulent spots.

This work is sponsored by the National Science Foundation and by the Department
of Energy, under their ASC program.

Appendix. Solution of the initial value problem
The initial value problem for the case of Squire modes, generated by single Orr–

Sommerfeld mode forcing, gives a theoretical basis for the coupling coefficient that
was used in the text to describe the effectiveness of disturbances in penetrating, and
perturbing, the shear layer. Linear theory is well developed (Grosch & Salwen 1978;
Gustavsson 1979; Schmid & Henningson 2001). We describe the solution to a linear
initial value problem to provide a connection between linear theory and nonlinear
mode interactions, and to provide a new perspective on Klebanoff modes.

Consider the general problem of a small disturbance to a parallel mean flow. The
disturbance can be expanded in Fourier components:

vκ (y, t) =

∫
kx

∫
kz

v(x, t)e−ikxxe−ikzz dx dz,

ηκ (y, t) =

∫
kx

∫
kz

η(x, t)e−ikxxe−ikzz dx dz.

Since the eigenfunctions for the Orr–Sommerfeld and Squire equations, as defined
by (2.3), are complete for a given horizontal wavenumber vector κ =(kx, kz), the
disturbance velocity and normal vorticity can be expanded in these eigenfunctions:

vκ (y, t) =

NOS,κ∑
n=1

aκ,n(t)φκ,n(y) +

∫
ky

aκ,ky
(t)φκ,ky

(y) dky,

ηκ (y, t) =

NSQ,κ∑
n=1

bκ,n(t)χκ,n(y) +

∫
ky

bκ,ky
(t)χκ,ky

(y) dky.




(A 1)

Subscript n denotes the discrete eigensolutions, while ky refers to the continuous
spectrum.

In order to extract the Squire response to a specific Orr–Sommerfeld mode (κ, k̃y),
we choose

aκ,ky
(t) = aκ,k̃y

δ(ky − k̃y)

so that

vκ (y, t) =

∫
ky

aκ,k̃y
(t)δ(ky − k̃y)φκ,ky

(y) dky = aκ,k̃y
(t)φκ,k̃y

(y). (A 2)
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Therefore the only vertical velocity disturbance present in the flow is

v(x, t) = aκ,k̃y
(t)φκ,k̃y

(y)eikxxeikzz.

The tilde over variables indicates that they are properties of the prescribed Orr–
Sommerfeld mode. Direct substitution of (A 2) in the Orr–Sommerfeld equation
results in

dtaκ,k̃y
(t) = −iωos,k̃y

aκ,k̃y
(t)

and hence

aκ,k̃y
(t) = aκ,k̃y ,0

e−iωos,k̃y
t
.

Now, it remains to solve the forced Squire equation. Properties of the adjoint
problem are used to separate the Squire response into its different eigenfunctions. The
adjoint eigenvalue problem is defined as

L
†
OSφ

†
m = L†φ†

m − iω†
mφ† = 0,

L
†
SQχ†

n = S†χ†
n − iω†

nχ
† = 0.

Since the eigenvalues of the original problem (2.3) are distinct (ωm �= ωn for m �= n),
the adjoint eigenfunctions satisfy

ω†
m = ω

m , ω
†
ky

= ω
ky

,

〈φ†
m, φn〉 = δmn,

〈
φ

†
ky

, φk′
y

〉
= δ(ky − k′

y),

〈χ†
m, χn〉 = δmn,

〈
χ

†
ky

, χk′
y

〉
= δ(ky − k′

y).

Using the orthogonality properties of the adjoint, the coefficients of the normal
vorticity are obtained from

bκ,m(t) = 〈χ †
m, ηκ (y, t)〉,

bκ,ky
(t) = 〈χ †

ky
, ηκ (y, t)〉.

Since ηκ satisfies the Squire equation, the above leads to

dtbκ,m(t) = −
〈
χ †

m, Sηκ (y, t)
〉

−
〈
χ †

m, Cφκ,k̃y
(y)aκ,k̃y ,0

e−iωos,k̃y
t
〉
,

dtbκ,ky
(t) = −

〈
χ

†
ky

, Sηκ (y, t)
〉

−
〈
χ

†
ky

, Cφκ,k̃y
(y)aκ,k̃y ,0

e−iωos,k̃y
t
〉
.

Expanding ηκ (y, t) according to (A 1) and using the orthogonality properties of the
adjoint leads to

dtbκ,m(t) = −iωκ,mbκ,m(t) −
〈
χ†

m, Cφκ,k̃y
(y)
〉
aκ,k̃y ,0

e−iωos,k̃y
t
,

dtbκ,ky
(t) = −iωκ,ky

bκ,ky
(t) −

〈
χ

†
ky

, Cφκ,k̃y
(y)
〉
aκ,k̃y ,0

e−iωos,k̃y
t
.

}
(A 3)

Before the solution for bκ,m(t) and bκ,ky
(t) is explicitly stated, recall that both

the Orr–Sommerfeld and homogeneous Squire eigenvalue problems have the same
continuous eigenvalues ωky

, for a given wavenumber vector (kx, kz, ky) = (κ, ky).
Therefore, resonance will take place between the single Orr–Sommerfeld mode and
the Squire mode with the same eigenvalue. Taking this resonance into account, the
spectral coefficients of the normal vorticity expansion are the solutions to (A 3): for
discrete Squire modes

bκ,m(t) = bκ,m(0)e−iωκ,mt − aκ,k̃y ,0

〈
χ†

m, Cφκ,k̃y
(y)
〉 [e−iωos,k̃y

t − e−iωmt

−i
(
ωos,k̃y

− ωm

)
]
; (A 4)
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Figure 24. Squire mode response to Orr–Sommerfeld forcing at R = 1000, kx = 0.01, k̃y = π,
kz = π. The response is evaluated at t = 60. (a) Abscissa is the secular term bκ,k̃y

χκ,k̃y
(y);

(b) Abscissa is a discrete evaluation of
∫ 5π

π/20 bκ,ky
χκ,ky

(y)dky .

for continuous Squire modes (ky �= k̃y)

bκ,ky
(t) = bκ,ky

(0)e−iωκ,ky t − aκ,k̃y ,0

〈
χ

†
ky

, Cφκ,k̃y
(y)
〉 [e−iωos,k̃y

t − e−iωky t

−i(ωos,k̃y
− ωky

)

]
; (A 5)

and for the resonant mode (ky = k̃y)

bκ,k̃y
(t) = bκ,k̃y

(0)e−iωκ,k̃y
t − aκ,k̃y ,0

〈
χ

†
k̃y

, Cφκ,k̃y
(y)
〉
t
[
e−iωos,k̃y

t
]
. (A 6)

If one considers the case with no initial vertical vorticity, ηκ (y, t = 0) = 0, then
bκ,m(0) = bκ,ky

(0) = 0.

Properties of the solution to the initial value problem

The solution to the temporal problem of normal vorticity generation due to Orr–
Sommerfeld forcing is given by substituting (A 4) to (A 6) into (A 1). The eigenvalue
problem used in deriving the solution is given by (2.3). This treatment emphasizes
the role of resonance between the Orr–Sommerfeld forcing and the Squire equation,
resulting in the secular growth (A 6).

The coupling term C does not appear as a non-normal contribution to the
eigenvalue problem; instead, it is included as forcing in the Squire equation. In
the solution (A 5), its contribution is the inner product 〈χ †

ky
, Cφκ,k̃y

(y)〉.
In optimal growth analysis, the coupling term C is treated as part of the matrix

operator, as in (2.2). The eigenfunction is the vector variable (φ, χ). Then it is not
obvious how certain Orr–Sommerfeld forcing induces better coupling to Squire modes
than others. By contrast, in the solution given by (A 5), the amplitude of coupling
is proportional to the penetration depth of the Orr–Sommerfeld mode: the deeper
penetrating modes sample more of the mean shear, and hence have larger coupling.

In the case of zero initial vorticity, the Orr–Sommerfeld forcing should generate
normal vorticity inside the shear region by tilting mean vorticity. No normal vorticity
should contaminate the free stream, except due to diffusion across the edge of the
boundary layer. Therefore, the superposition of Squire modes in (A 1) should vanish
in the free stream, but not inside the boundary layer.
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Figure 24 shows the Squire response to Orr–Sommerfeld forcing at R = 1000,
kx =0.01, k̃y = π, kz = π. The maximum amplitude of the initial normal velocity
disturbance is unity in the free stream,

max |vκ (t = 0)|y→∞ = max |aκ,k̃y
(t = 0)φκ,k̃y

(y)|y→∞ = 1.

The figure shows the response at t =60. Plot (a) is the secular term bκ,k̃y
χκ,k̃y

(y) which

oscillates in the free stream. Plot (b) is a numerical evaluation of
∫ 5π

π/20
bκ,ky

χκ,ky
(y) dky

of equation (A 1). The superposition of eigenmodes is destructive in the free stream.
But because penetration into the shear region is wavelength dependent, the disturbance
reaches large amplitude inside the boundary layer. Resonant forcing of penetrating
modes produces a large response in the boundary layer, but this must be qualified by
the observation that all modes are present to cancel the disturbance at large y. Thus,
one obtains a perspective that breathing ‘modes’ can be understood as a superposition
of Squire modes.
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